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A differential approximation for the equations of radiative transfer in a grey 
gas is applied in a study of the effects of thermal radiation upon the classical 
problem of the compressive action of a plane, cylindrical or spherical piston. 
The ambient gas ahead of the precursor shock wave is supposed cool and the shock 
wave transparent, whilst the piston is taken to be neither an emittor nor reflector 
of radiative energy. It is shown that self-similar flow patterns may arise if the 
ambient density and piston speed are both non-uniform with variations linked 
to the absorption coefficient which is assumed to be density and temperature 
dependent. Detailed flow patterns are obtained in the case of general opacity 
and also in the transparent limit from which it is deduced that under certain 
conditions the approximation provided by the latter may be rather dubious. 

1. Introduction 
The problems of radiative energy transfer in fluids have received increasing 

attention in recent years as a consequence of the increasing speeds of bodies 
through the atmosphere and the very high temperatures attained by gases in 
motion. Effects of radiation are of significance in the fields of nuclear power and 
space research, for instance. 

However, the phenomena associated with heat transfer in a radiating fluid are 
extremely complex whether the fluid is at  rest or in motion, steady or unsteady. 
Whilst the underlying physical concepts have been understood for a considerable 
time, the mathematical formulation of a model to represent the behaviour of a 
radiating gas leads to a coupled system of differential, integral and integrodifferen- 
tial equations. The difficulty in solving such systems is very considerable and 
progress in the analysis of radiative gasdynamics has been slow. In  addition to 
this inherent barrier to progress added complications are generated by the essen- 
tial non-linearity of the equations and large number of parameters involved, 
together with the fundamental dependence of the radiative flux upon the geo- 
metrical configuration and structure of the boundaries of the physical problem. 

The consequence of these complexities has been to stimulate a search for 
approximate formulation of the equations of radiative transfer together with, 
perhaps, an over-emphasis upon plane problems with boundaries at infinity. 
Moreover, in the majority of studies the conditions are either stationary or 
steady, as for example in the case of radiative shock structure analyses. Never- 
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theless, it is important that an effort should also be directed towards other aspects 
of radiative gasdynamics and the work reported here has been undertaken with 
this in mind. An important facet of this investigation is the use of a more general 
approximation, retaining finite opacity, for the equations of radiative transfer in 
contrast with the transparent or Rosseland limits corresponding respectively 
to optically thin and thick gases. A direct assessment of the transparent approxi- 
ination is thus made in this paper and under some circumstances it has been 
shown to be inadequate. In addition, the radiative boundary conditions have 
been imposed at  finite, rather than infinite, points, with corresponding enhance- 
ment in our understanding of their effects. Finally the problems studied are 
unsteady in both planar and non-planar geometries so that from the patterns of 
behaviour which are established one may obtain an estimate of the effects of 
curvilinear configurations. 

The various forms of approximation which have been used to simplify the 
governing equations of radiative transfer lead to a system of equations which are 
entirely differential. One such type of approximation is indeed termed the differen- 
tial approximation and the particular form which is employed here is that 
developed in earlier work by Helliwell (1966) in which, as a result of using a 
truncated series expansion for the radiative intensity and a moment-generating 
method, a system of differential equations has been established for the local 
backward and forward fluxes of radiation, valid for three-dimensional configura- 
tions and general opacity of the gas. It is the purpose of this paper to apply 
these equations in a study of the effects of radiative heat transfer upon the classical 
problem of a plane, cylindrically symmetric or spherically symmetric piston, 
thrust by compressive action into a gas to generate a strong precursor shock 
wave. In the non-planar cases the motion of the piston is taken to be outwards 
from the central axis or point of symmetry so that the shock wave is explosive, 
rather than implosive. The problem in the plane case has been examined pre- 
viously by Wang (1964) who employed a modification of the Schuster-Schwarz- 
schild differential approximation for the equations of radiative flux. In  addition 
to  using an improved form of approximation the present work also extends the 
investigation to flows with non-planar geometry. 

In an endeavour to obtain a solution to the problem sufficiently detailed for 
precise conclusions to be drawn as to the major radiative effects, a number of 
simplifications are made concerning the gas and piston properties. Specifically, 
a perfect grey gas in local thermodynamic equilibrium has been chosen so that 
the equation of state is not complex, the radiative effects are presumed frequency 
independent a,nd it is meaningful to refer to t~ gas temperature. Furthermore, the 
radiative pressure tensor and energy density are taken to be negligibly small, an 
assumption which is known to be reasonable provided that the temperature is 
not extremely high nor the gas very tenuous. Finally it is assumed that the am- 
bient gas ahead of the shock wave is cool and the shock wave itself is transparent 
to radiation, with the piston also cool and non-reflecting, so that no radiative 
flux enters the gas between the shock and piston across either shock or piston 
boundaries. 

Now, in the absence of radiation, the general aspects of piston problems are 
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well known. The early work of Taylor (1946) upon the subject laid the foundations 
for later studies and in his book Sedov (1959) has systematized the analysis appro- 
priate to the class of self-similar solutions. When the effects of radiation are not 
negligible the problems are shown to form an extension of this class provided that 
there holds a simple relationship between certain exponents in the expressions 
for the piston speed, the ambient density and the absorption coefficient, all of 
which may be supposed non-uniform. The particular forms chosen for these are 
stated explicitly as equations ( l l ) ,  (12) and (10) respectively. The latter is a 
consequence of the data concerning optical properties. To justify the introduction 
of the form (11) it may be observed that, in non-radiative hypersonic flow theory 
with slender bodies possessing power law profiles, the flow in the shock layer is 
given by the solution of analogous unsteady piston problems with the stated 
piston speed. It is thus natural to take this same relationship for the correspond- 
ing radiative piston problems (following Wang). With regard to equation (12), 
whilst the form is essential for the generation of self-similar flow patterns, yet it 
is also of interest to note that a power law spatial variation of ambient density 
may be relevant in astrophysics, where radiative transfer is of considerable 
importance. The properties of such self-similar solutions are examined and de- 
tailed flow patterns are obtained for various geometries, specific heat ratios and 
absorption coefficients. The effects of thermal radiation are deduced in both the 
cases of general radiative transfer and the transparent limit from which it is 
noted that the latter may not provide an assessment even qualitatively accurate. 

2. Governing equations and self-similar formulation 
The fundamental equations governing the one-dimensional motion of an 

inviscid perfect gas in which the effects of radiative flux may be significant are 
statements relating to conservation of mass, momentum and energy, and can be 

(1) 
aP a PV 

written in the form 
-+-(pv)+(v-1)- = o  
at ar r ’  

av av iap 
-+v-+-- = 0, 
at ar par 

(;+v;) e+P (;+v&)p+p a 1 1 (%+--) a v-i q = 0. 
(3) 

Here v is the speed of the gas, p the pressure, p the density, e the specific in- 
ternal energy, t the time and r is the single spatial co-ordinate being either axial 
in flows with planar geometry or radial in cylindrically and spherically symmetric 
flows. The constant v takes the value 1, 2 or 3 according to the dimensions of 
the respective geometry. In  addition q denotes the magnitude of the flux of 
thermal radiation along the co-ordinate direction and is separated into its for- 
ward and backward components, qr , respectively, so that 

= 9- - q+. (4) 

P = 9PT, ( 5 )  

Furthermore, the equation of state of the gas is taken to be of the form 

32-2 
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where W is the gas constant and T is the temperature, together with 

where y is the ratio of the specific heats. Finally the equations under differential 
approximation for the variation in the radiative flux components may be written, 
following Helliwell, as follows: 

general opacity (g + ?) (a- - a+) = 4nkB - 2k(q- + a+), 

transparent limit 

a 
$ (a- + a+) = - @(a- - q,); 

(9 )  

where B denotes Planck's radiation function and is given by B = aT4/n, a is 
Stefan's constant and k is the local volumetric absorption coefficient. 

Whilst in reality the absorption coefficient is a complex function of the pro- 
perties of the gas it is assumed for the present analysis that its true character 
may be approximated by a simple relationship involving solely the density and 
temperature, of the form 

Representative values of grey absorption coefficients have been presented by 
Armstrong et al. (1961) and from these it can be shown that for a specific range of 
temperature the above expression has reasonable validity, the values of K ,  z 
and p varying, however, with the corresponding range. Thus, for densities of the 
order of the ambient value at mean sea level, viz. p N 1.29 x g/cm3, one finds 

a = l ,  p = 5 ,  K = 2 x 1 0 - 1 8  for T < Z x l O 4 ;  

a = 2 ,  p =  -1, K = 7 x 1 0 1 1  for 9 x 1 0 4 < T < 2 x 1 0 5 .  

(10) k = Kp"T8. 

Now, as in the non-radiative case, (1)-(3) contain no dimensional constants. 
However, when these are combined with the remaining equations (a)-( 8) and 
( 1  0) relevant to a, gas of general opacity there arise two constants, of independent 
dimensions, which may be chosen to be the following: 

KB/&Y+~ with dimensions M1-n L3a-28-9 T28+5, 

K/Wb with dimensions I M P  L3a-2~--1 T28, 

where M ,  L, T are quantities possessing dimensions of mass, length and time, 
respectively. In the transparent limit it can be shown that only the first constant 
occurs. Thus, since it is known that a self-similar flow pattern may exist and the 
governing equations reduce to  ordinary differential form provided that exactly 
two independent dimensional constants arise in the complete formulation, 
including boundary conditions, it  follows that in self-similar radiative piston 
problems no additional constants with independent dimensions may present 
themselves in the boundary conditions. 
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Hence we consider the non-uniform motion of a piston thrust with speed 

u = U0t" (n > -1) (11) 

p = p1 = por-O (w > O ) ,  (12) 

into a gas at rest in which the density varies with position according to the law 

where n and -w are arbitrary constants. It is known that ahead of the piston must 
run a shock wave which in a self-similar flow pattern must be strong in order that 
the ambient pressure ahead may be neglected compared with that behind, 
otherwise three constants of independent dimensions arise in the boundary con- 
ditions so far formulated. The two constants which remain are 

Uo with dimensions LT-@+l), 

po with dimensions ML0-3. 

With regard to the radiative boundary conditions, it is assumed that the piston 
is such that it neither emits nor reflects radiation, and thus may be said to be 
cool and black. In  addition the gas ahead of the shock wave is also supposed cool 
so that it does not emit radiative energy, and thus no radiative flux passes into 
the gas behind the shock wave from upstream. Furthermore, the transition region 
within the shock wave itself is taken to be transparent to the radiative flux, so 
that the jump equations across the front reduce to those of a strong non-radiative 
shock passing into a gas at rest. Hence 

v2 = 2c/(y+ 1), (13) 

where c is the shock speed and the suffixes 1 and 2 denote conditions upstream 
and downstream respectively. Thus for the region of disturbed gas between the 
piston and precursor shock wave, (12)-( 15) together with 

q+ = 0 (16) 

provide the boundary conditions immediately downstream of the shock, whilst 
(1  1) together with 

q- = 0 

yield the corresponding conditions at  the piston face. Clearly among these con- 
ditions there exist a further two independent dimensional constants, so that a 
self-similar radiative piston problem may be formulated if the dimensions of 
these constants are consistent with those arising from the governing equations. 
This is so provided that 

as determined previously by Wang (1964) for the plane case. Rather less restric- 
tive conditions are necessary in the transparent limit. 
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For self-similar problems, the independent dimensional constants U,, po 
may then be taken as basic and a dimensionless similarity variable, A ,  can be 
introduced, defined by 

where 6 = n + 1 and the parameter A* is inserted so that immediately behind the 
shock wave one may choose h = 1. It then follows that h = A* at the piston face. 
The field variables describing the flow pattern are then able to be written in terms 
of dimensionless functions of A ,  such that 

It is also convenient to define a dimensionless acoustic speed in terms of the 
variable z, where 

In terms of these new variables it is now a straightforward but tedious matter 
to obtain the appropriate forms of the governing equations and associated 
boundary conditions. 

For a gas of general opacity one finds: 

d V A- = 
V (  v - 1 )  (6 - V )  - ( K  - vV) + f 

d h  (6- vy-2 , 

Y (23)  
h dR ( w - Y ) V { Z - ( ~ -  V ) 2 } + ( 6 -  V ) V ( V - ~ ) - Z ( K - V V ) + ~  __ _ -  - - 
R d h  (6- V ) { ( 6 -  V)"Z} 

z(6-  V)2 [{2 + (7- l)v}V- 21 + ( y  - 1)  zV( V -  1) (6- V )  
- z2{2 V + ( y  - 1 )  K - 2)  +-f{Y(6 - V)2- 2) ) ( 24)  -__ dz A- = 

d h  (8- V){ (6 -  V)"z} 

2h dQ- - = ( ( 2 ~  - v - 5 )  - 4K2h2a/' d Ra} Q- + {(v - 1) - aK2 h2P/' d R a }  Q+ 
ah 

+KlA(2P+5)/8d+4Ra, (25 )  
2h dQ+ ~ - - {(v - 1) + &K,A2IIS d R a }  Q- + {(2w - v - 5 )  +$K2h2P/' d Ra) Q+ 

d h  

where 
- Kl A(2P+W z8+4 R a ,  (26 )  

Y K  = ( w - 2 ) 6 + 2 ,  

subject to the boundary conditions 

V =  6, Q - = O  at h=A*. (29 )  
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In the transparent limit the appropriate equations may be immediately de- 
duced from the general set by putting K, = 0. The equations for V ,  R and z 
then become independent of the radiative flux components, Q+, and may be 
solved separately. In  terms of this solution the variation of Q with h is then ob- 
tained by means of a single quadrature, and one finds 

where 

and z, R are regarded as functions of r j .  

Finally it is necessary to obtain from (19) and (20) the relationship between 
the similarity solution and the physical variables. The most convenient form 
of this is the following: 

where h = r / rs  and the suffix s denotes values immediately behind the shock 
front. The latter, apart from Qs- which is determined from the solution itself, 
are given immediately by (12)-( 15) and (1  9). 

It is observed that in radiative flows the governing equations and boundary 
conditions (22)-(29) comprise a two-point boundary value problem. Furthermore, 
the system of ordinary differential equations is non-autonomous. Hence the 
existence of solutions for arbitrary a, p is difficult to ascertain with precision, 
and when they exist the details can only be obtained by extensive computation. 
Thus in order to gain an insight into the probable forms of solution and to lay a 
foundation upon which to build the effects of radiation, a study is first made of 
the simpler autonomous non-radiative case for arbitrary piston speed and ambient 
density. 

3. Non-radiative piston problems 
The non-radiative problem is governed by (22)-(24) in which K, = 0 = K,, 

with the boundary conditions upon Qrt omitted from the sets (28) and (29). Thus 
the solution may be determined in the ( V ,  2)-plane from the equation obtained 
by eliminating h from the pair (22) and (24). This is 

z[ (S-  V)2{[2+(y- l )v]V-2}+(y-1)v(s -  V ) ( V - 1 )  

* (32) 
dz 
av - 

- z(2 V + ( y - 1) K - 2}] _ -  
(6  - V )  [ V (  V - 1) (S- V )  - ( K  - VV) 23 

It should be noted that in the region behind the shock wave, since the flow there 
is subsonic, one has 

and the domain of interest in the (7, 2)-plane is 

z - ( S -  V)2 > 0, 

2S/(y+1) < v < 6, 2 > 0. 
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It is also recalled that the appropriate values of w and 6 in connexion with radia- 
tive problems are related primarily by equations (18) to the radiative parameters 
a, ,5’ which the opacity data of Armstrong et al. (1961) indicate are such that 
1 < 01 < 2,  - 5 Q p Q 7. By and large it is reasonable to take 

a = 1, 

a = 2 ,  - 5 ~ / 3 < 0 + 4 < w < o o ,  O < S < #  for T >  104-5degK. 

Thus the various cases may be investigated together by working in terms of 
the single parameter 6, which extends over the range 0 < S < 1. However, differ- 
ences in flow pattern arise according to the magnitude of y for which we shall 
take two alternative values; either y = g, which gives rise to certain special 
features, or y = +, the results for which are typical of those for other values, 
1 < y < 2 .  In  what follows details of the solution are presented for y = 8 and, 
where appropriate, an indication is given of the corresponding more typical 
behaviour associated with y = $. 

For y = p the singularities of the differential equation (32) are as follows: 
(i) V = 0,  z = 0, a node; 

(ii) V = 6, z = 0, a saddle; 
(iii) V = 1, x = 0, a node; 
(iv) V = 5 / ( 5 + v ) ,  x = v / ( ~ + v ) ~ ,  a node or saddle depending upon the values 

(v) if v = 1, V = 56/4, z = J2/16, a node or saddle depending upon the value of 
6. If v = 2 or 3, in place of (v) two singularities (v) and (vi) arise for 6 
sufficiently large both of which lie on the acoustic locus x = (6- V)z; 

0 < ,5’ 6 ?’--+A < w < 1, Q < 6 < 1 for T < 104.5 degK, 

of v, 6; 

(vii) V = 5(1- 6) /v ,  x = co, a saddle. 
In addition the integral curves have zero slopes on 

2 = 0, z = {V-3(2+36)}2-&{(96-4)(6-l)},  

and infinite slopes on 
z = { V (  V -  1)  ( V -  6)}/{V- 5(1-  a)}. 

Also, as (23)-(25) show, on these curves h is an extremum at points of intersection 
with the acoustic locus, except at singularities. Thus, in general, for physically 
meaningful self-similar solutions to occur, integral curves must exist which ex- 
tend from the shock point V = 5S/6, z = 7S2/36 at h = 1 to end on the piston 
path V = S where h = A*( < 1) without en route crossing the acoustic locus except 
possibly at a singularity. It is clear that in at least a segment of 56/6 < V < S 
it is necessary that d V / d A  < 0. Hence from ( 2 2 )  since in this range x - ( V - 6)2 > 0 
and V ( V -  1 ) f V -  6 )  > 0 and z > 0, it follows that solutions do not exist if 
6 < 5 / ( v  + 5 ) .  Therefore it appears that no solution exists if the singularity (iv) 
lies to the right of the piston path V = 6. As the value of 6 increases, a study of 
the integral curves shows that solutions cannot exist until a value is attained such 
that the shock point lies to the right of the unique integral curve which passes 
through the singularities (ii), (iv) and (vii). However, it is not possible to 
obtain an explicit inequality for S from this condition since an analytic form is 
unobtainable for this curve. Nevertheless, a slightly weaker condition can be 
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determined precisely, for a solution always exists if the shock point lies to the 
right and above the locus of infinite slopes of the integral curves. Hence solutions 
certainly exist for S 2 48/(47 + 7v). The integral curves appropriate to spherical 
pistons are shown in figure 1 for a value of 6 when a solution exists even though 
this inequality is just not satisfied. For all realistic patterns, as that illustrated 
here, the solution curve ends upon the piston face at  a regular point of (32) so 
that conditions throughout the field of flow are finite everywhere. 

0.2 

z 

0.1 

0.1 0 3  05 0.7 
V 

FIGURE 1. Integral curves. Non-radiative case: v = 3, y = g, S = &. The arrows indicate 
the sense of increasing A. 

In  the case when y = 5 the locations of the singularities (i), (ii) and (iii) of 
the governing equation (32) remain the same as for y = g, but (ii) is now not 
simple. The singularities (iv), (v), (vi) and (6) arise, as before, with the addition 
of 

(viii) V = S, x = co, a saddle. 
The analysis of the integral curves for varying 6, carried out as for the previous 

case, then shows that solutions cannot exist if 8 6 21/(21+5v) and certainly 
do exist for 6 3 32/(31+ 5u). In figure 2 is shown the system of integral curves 
for the planar case when v = 1 and the limiting value S = $ is chosen so that the 
shock point lies on the locus of infinite slopes. The general result that all solution 
curves enter the singularity (ii) is clearly portrayed here, so that at the piston 
face singular values occur for certain of the flow variables. Indeed it can be shown 
analytically that as the solution curve approaches (ii) the velocity and pressure 
remain finite but the temperature tends to zero whilst the density becomes 
unbounded. 
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The results of this section may be summarized as follows. For arbitrary y 
in the range 1 < y < 2 solutions do not exist if 6 < 7/(7 + yv). On the other hand, 
solutions do exist if 6 2 8( 1 + v)/{9 + (7 + 2v) y}. No definite statement is possible 
for values of 6 between these limits, apart from the fact that solutions certainly 
continue to exist for values of 6 a little below the second of these limits. Detailed 
computation has been made of the solution in the cases when a = 1, /3 = 5 
(6 = ++), and a = 2, /3 = - 1 (6 = 9) for all v and both y = 8 and 4. Apart from 
the density and temperature near the piston face, the results are essentially 
unchanged as the value of y varies, and thus complete flow patterns are presented 
in figures 3-6 only for the plane and spherical pistons with y = 8. Similar cal- 
culations for a = 2, /3 = - 2 (6 = f) show little difference apart from the non- 
existence of the solution when v = 1.  

0.4 

z 

0.2 

-Piston 
path 

Acoustic 
locus 

:ii) -- 
0.2 0.4 0.6 0.8 

V 

FIGUFLE 2. Integral curves. Non-radiative case: v = 1, y = +, 8 = f. 
The arrows indicate the sense of increasing A. 

4. Radiative piston problems 
The solution of the full system of radiative equations (22)-(27) under the 

boundary conditions (28) and (29) has been carried out upon a digital computer 
using the Runge-Kutta-Merson technique for the numerical integration. 
Despite the fact that an alternative procedure involving the quadrature (30) 
could have been employed in the transparent limit, for computational purposes 
it was found more convenient to use essentially the same process for all the radia- 
tive calculations. 

In the transparent limit, as previously remarked, (22)-(24) for V ,  R and z 
become independent of Q* whilst (25) and (26) are two linear differential equa- 
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tions for Q*. The boundary conditions (28) and (29) are such that values of V ,  
R, Q+ and z are given at  h = 1 whilst Q- is unknown there. Hence by computing 
two solutions for arbitrarily specified Q- at h = 1, for each of which the forms 
of V ,  R and x are identical, it is a simple matter to combine these linearly so that 
Q- is zero at V = 6 and thereby to derive the solution which fits all the boundary 

1.1 

4 1.0 
B 

0.9 

1. 

* 1.1 
P, 
P 

0' 

I I I t  

0.8 0.9 1.0 

rlr, 

6 

s4 
9 

2 

0.5 

I I I )  

0.8 0.9 1.0 

rlrs 

m a m  3. (a) Velocity distribution. (b )  Density distribution. (c) Pressure distribution. 
(d )  Radiative flux distribution. - , non-radiative ; -, transparent radiative ; general 

, po = 1 . 2 9 ~  10-4; - -  -, po = 1 . 2 9 ~  Flow pattern: v = 1, y = 2 radiative: -- 6 ,  

a = 1,p= 5. 
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conditions. For the case of general opacity such a simple technique is not avail- 
able. However, it is reasonable to make an estimate of the value of &- at h = 1 
by using the transparent solution, and employing this for a k s t  calculation and a 
slightly different value for a second, neither of which satisfy &- = 0 at V = 6, 
it  is possible to design an iterative process which ultimately converges to the 
required solution. 

1 .o 

-J" 0.8 --. 

0-6 

100 

,' r-, 

FIGURE 4. (a )  Velocity distribution. ( b )  Density distribution. (c) Pressure distribution. 
(d )  Radiative flux distribution. - , non-radiative; - , transparent radiative; general 
radiative: - - -, p o  = 1.29 x 10". Flow pattern: Y = 1, y = $, DL = 2, p = - 1. 
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The calculations are carried out for a similar range of parameters as before, 
viz. v = 1, 2, 3; y = $, $; a, 
The value of Stefan's constant, cr, is taken to be 5.735 x ergs/cm2 and the 
value employed for the gas constant, 9, is 2.882 x lo6 ergs/g degK. For ease of 
calculation a range of values for the dimensionless constant K,  is chosen rather 
than one for the piston speed U,, and in figures 3-6 is shown the continuous 

= (1, 5), (2, - 1); po = 1.29 x lo-*, 1.29 x 

1.2 

d 1.1 . 
P 

1 .o 

1.: 

- 1. -5 
a 

1.C 

10'0 

0.92 096 1 .o 
TIT8 

1 I I 

0.92 0.96 1 .o 
TIT, 

6 

- 4  9 
P 

0.92 0.96 1 .o 
TIT8 

FIGTTRE 5 .  (a) Velocity distribution. ( b )  Density distribution. (c) Pressure distribution. 
(d) Radiative flux distribution. - , non-radiative; - , transparent radiative; general 

po = 1.29 x 10-4; - - - , po = 1.29 x Flow patterns: v = 3, y = 1 radiative : - -, 6 ,  

a. = l , p  = 5 .  
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variation with position of the flow field for the plane and spherical pistons 
with y = f .  In the transparent limit the results in the plane case agree closely 
with the earlier computations of Wang cited above, but for the more realistic 
case with general opacity they differ in several respects. 

First of all it is noted that, with increase in the geometrical dimensions, the 
basic parameters of the flow being unchanged, the value at the piston face of 
r/r, increases, which indicates that the piston follows the shock more closely. 

1.2 

- 1.1 2. 
B 

1.0 

I 1 I 

0.92 0.96 1.0 

Tb-8 

s 
Qi 1.05 

1.oc 

100; ;q 
I I I 

092 0.96 1 Q 

rlrs 

0.5 

- 0  2 
m 
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I I I I 

0.92 096 100 

F i r ,  

K ,  = 

092 0.96 1 .o 
rirs 

FIGURE 6. (a) Velocity distribution. ( b )  Density distribution. (c) Pressure distribution. 
(d )  Radiative flux distribution. - , non-radiative ; - , transparent radiative ; general 
radiative: - - - ., po = 1.29 x Flow pattern: v = 3, y = %, a = 2, /3 = - 1. 
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As the radiative effects become more important through the increase of K ,  
and thus of the piston speed, the piston follows even closer behind the shock. 
However, in the transparent limit these effects are exaggerated and as the density 
parameter increases so does the optical thickness of the gas and the more exact 
solution deviates somewhat from the transparent approximation. 

The effect of radiation upon the velocity is seen to be quite different for plane 
and spherical pistons. For the latter its influence is always fairly small and quali- 
tatively is the same as that in the absence of radiation with a rise in the particle 
speed as one moves back from the shock towards the piston, whilst for the plane 
case the gas velocity in general falls. However, in this case the effects only remain 
small at  lower temperatures (a  = 1, /3 = 5) and even then become more marked 
as K ,  increases and a narrow region of steep velocity gradient develops locally 
behind the shock. At higher temperatures (a = 2, /3 = 1) the effects of radiation 
are considerable with the same general properties as before. The use of the 
transparent limit again exaggerates all radiative effects. 

The pressure is little affected by radiation. For the spherical piston the dis- 
tribution is very similar to that in the non-radiating case with merely a steepening 
of pressure gradient everywhere but particularly behind the shock. In  the plane 
case, whilst in the absence of radiation the pressure falls as one moves towards the 
piston, the effect of increasing the piston speed with radiation is to introduce 
a local increase of pressure behind the shock. In this instance the transparent 
limit gives a good approximation. 

Radiative effects upon the density and temperature distribution are marked. 
In the non-radiative case the density remains nearly constant, but radiative 
transfer in the transparent limit causes a rapid increase of density to occur near 
the piston face, and at  lower temperature (a = 1, /3 = 5) as K,  increases a similar 
rapid growth begins to take place behind the shock to form two boundary layers 
with a slower rate of change in between. On the other hand, at  higher temperatures 
(a  = 2, /3 = - 1)  no boundary layer develops at  the shock. However, the effects 
are exaggerated in the transparent limit, particularly in the vicinity of the piston 
and it seems that the boundary layer at the piston face may not develop; in fact 
the calculations for a = 2, /3 = - 1 suggest that in the plane case the density is 
actually decreasing there. Similar behaviour applies to the temperature, the 
distribution of which is easily deduced from the relationship 

TITS = (P/PJ/(PlPs)- 

It appears that it always falls steeply behind the shock wave and continues to 
decrease as one moves towards the piston. 

A few remarks at  this stage concerning the effect of the radiative boundary 
conditions are appropriate. Analysis has shown that, in general, a thermal bound- 
ary layer develops at  both the shock and the piston face. Since no radiative 
flux enters the gas from upstream of the shock, a condition formally stated 
by (16), the consequence is that immediately behind the shock the temperature 
falls steeply. On the other hand, since the shock is assumed transparent, the 
radiative flux from downstream passes straight through and is absorbed in the 
upstream gas. However, in the context of the self-similar model this is lost to 
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the problem, for the strong shock condition demands that all upstream energy 
is neglected compared with that downstream, whilst in fact it could well be 
that this contribution counteracts to some extent the temperature drop behind. 
The question is still an open one and further investigation is necessary to resolve 
it. A similar situation arises at  the piston face, for the assumption of a cool non- 
radiating piston, stated formally by (17), takes no account of the temperature 
rise that must result in the piston as radiation is absorbed from the hot gas 
between it and the shock wave. 

The behaviour of the radiative flux is the same for all geometries. As R, 
increases with piston speed the domain of high temperature moves nearer to 
the shock wave and the flow of radiative energy is generally directed towards 
the piston except in an increasingly narrow region immediately behind the 
shock wave. As one may expect, the effect is less marked as the overall temperature 
of the gas rises, and as the ambient density and hence optical thickness of the 
gas increases the radiative flux at  the piston becomes considerably less than that 
at  the shock. It should be noted that for the plane piston and also for y = $ 
(not presented here) the calculations show that the radiative flux computed from 
the transparent limit is rather inaccurate, for the use of the more exact equations 
yields a distribution in which the value of q/qs has a minimum which moves 
nearer the shock as the piston speed increases. 

Finally it is important to note the range of validity of the foregoing analysis, 
which rests upon the assumption that the precursor shock wave is strong. The 
condition necessary for this is c 9 a,, where c is the shock speed and uo is the 
acoustic speed in the upstream undisturbedgas. Hence ifp, is the uniform ambient 
pressure it follows from (12) and (19) that the results are valid provided that the 
shock location r = rs is such that 

For instance, using c.g.s. units, if p, N and p ,  N lo3 then the solution only 
holds provided that rs < los when a = 1, = 5, but rs Q lo4 at higher tempera- 
tures with a = 2, /3 = - 1. 

In  addition, it must be observed that, since in the model investigated w > 0 
and n < 0, the piston, located initially at  the origin, is impulsively set in motion 
into a gas which is infinitely dense there with a speed which steadily decreases 
but is at  first infinite. Thus, of necessity, the instant t = 0 must be excluded from 
specific physical interpretation although all successive instants of time are 
acceptable. 
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